Probability and Statistics, Sample Prelim Questions, Spring 2021

1. Let X_1, X_2, \ldots, X_n be an independent random sample drawn from a Poisson distribution with mean λ , and $\lambda > 0$ is an unknown parameter.

$$
f(x|\lambda) = \begin{cases} e^{-\lambda} \frac{\lambda^x}{x!} & \text{for } x = 0, 1, 2 \dots \\ 0 & \text{elsewhere} \end{cases}
$$

Consider two estimators for λ , $T_1 = \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} X_i$ and $T_2 = \frac{1}{n-1}$ $\frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X})^2.$

- (a) Are T_1 and T_2 unbiased estimators for λ ? Justify your answer.
- (b) Which estimator is more efficient for λ , T_1 or T_2 ? Justify your answer.
- (c) Calculate the Cramer-Rao lower bound for unbiased estimator of λ^2 .
- (d) Suppose that λ has an exponential prior distribution with mean $\theta > 0$,

$$
f(\lambda|\theta) = \begin{cases} \frac{1}{\theta}e^{-\frac{\lambda}{\theta}} & \text{for } \lambda > 0\\ 0 & \text{elsewhere} \end{cases}
$$

Derive the posterior distribution of λ .

- (e) Compute the posterior mean of λ and show that the posterior mean of λ is consistent for λ as $n \to \infty$.
- 2. Consider the following joint density for random variables X and Y:

$$
f(x,y) = \begin{cases} k(1-y), & \text{for } 0 < x < y < 1 \\ 0 & \text{elsewhere} \end{cases}
$$

- (a) Find k .
- (b) Evaluate $\mathbb{E}(X)$ and $\mathbb{E}(X^2)$. Find the variance of X.
- (c) Derive the conditional density $f(y|x)$ and the conditional expectation, $\mathbb{E}[1-Y | X]$. Hence or otherwise, evaluate $\mathbb{E}(Y)$ and $Cov(X, Y)$.
- (d) Find $P(Y < 2X)$.
- **3.** Suppose that X_1, X_2, \ldots, X_n is an i.i.d. sample from a normal distribution with mean μ and variance 1. Remember that the density of X_i is $\frac{1}{\sqrt{2}}$ $rac{1}{2\pi}$ exp $\left(-\frac{(x-\mu)^2}{2}\right)$ $\frac{(-\mu)^2}{2}$).
	- (a) Show that the likelihood ratio test of the null hypothesis $\mu = 3$ against the alternative hypothesis $\mu = 5$ rejects the null hypothesis if and only if $\bar{X} = \frac{\sum_{i=1}^{n} \check{X}_i}{n} > c$ for some c.
	- (b) Find the value of c if $n = 6$ and the probability of Type I error is 0.05.
- 4. Consider the linear regression model

$$
y = X\beta + \epsilon
$$

where X is a matrix of size m by n and rank n, y is a vector of length m, β is a vector of length n, and ϵ is a random vector with the multivariate normal distribution $N(0, \sigma^2 I)$.

- (a) Write down the likelihood function.
- (b) Use the likelihood function from part (a) to Show that the MLE is

$$
\hat{\beta} = \arg \min \|X\beta - y\|_2^2
$$

- 5. Consider the classical Gambler's Ruin Problem. Me and my friend are tossing a coin, if the coin comes up Heads, I win \$1 from my friend, if Tails, I lose \$1. I start with a dollars and my friend starts with b dollars. The game ends when one of us loses all their money. We will model the amount of money I have after *i*th toss as a Markov Chain X_i , for a nonegative integer i, and $X_0 = a$. The state space is $\{0, 1, ..., N\}$, where $N = a + b$.
	- (a) Specify the transition matrix.
	- (b) Classify all the states of the Markov Chain as recurrent or transient, with explanations.
	- (c) Argue that eventually the game will end with probability 1.
	- (d) Let u_i be the probability that, starting at the state i, I will eventually win the game. Set up a system of equations describing $u_i, i = 0, 1, ..., N.$
	- (e) Solve the system.

6. Consider a Poisson process $X(t)$ with intensity λ , so that

$$
p_k(t) = P(X(t) = k) = \exp(-\lambda t) \frac{(\lambda t)^k}{k!}.
$$

Let W_k be the time when kth event happens.

- (a) Using the formula for $p_k(t)$, derive an expression for the density of W_k .
- (b) Calculate $\mathbb{E}(W_3 | X(t) = 5)$ and $\mathbb{E}(W_5 | X(t) = 3)$
- 7. Consider the single-server queue with i.i.d. Exponential (with the mean α) interarrival and i.i.d. Exponential (with the mean $β$) service times. Let $X(t)$ be the number of total customers (both under service and in queue) in the system at the time t. Model $X(t)$ as a life-and-death process. Find the limiting distribution $\pi_k = \lim_{t\to\infty} P(X(t) = k)$ and the conditions under which it exists.