Probability and Statistics, Sample Prelim III Questions, Fall 2021

1. For the Normal random variable with density

$$f(x; \mu\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

consider estimating the parameter $\boldsymbol{\theta} = (\mu, \sigma)'$.

- (a) Find the Fisher information matrix for θ
- (b) Using the multivariate Delta-method, find the approximate distribution for $\tau = \mu + \theta$.
- (c) Find a large-sample 99% confidence interval for τ .
- **2.** Let X be uniformly distributed between 1 and 3. Let Y, conditioned on X, be exponentially distributed with the rate $\lambda = X$. Find $\mathbb{E}(Y)$. Find P(X > 5).
- **3.** Suppose that $\mathbb{E}(\hat{\theta}_1) = \mathbb{E}(\hat{\theta}_2) = \theta$, $Var(\hat{\theta}_1) = \sigma_1^2$ and $Var(\hat{\theta}_2) = \sigma_2^2$. Consider the estimator $\hat{\theta}_3 = a\hat{\theta}_1 + (1-a)\hat{\theta}_2$.
 - (a) Show that $\hat{\theta}_3$ is an unbiased estimator of θ .
 - (b) If $\hat{\theta}_1$ and $\hat{\theta}_2$ are independent, how should constant a be chosen in order to minimize the variance of $\hat{\theta}_3$?
 - (c) If $Cov(\hat{\theta}_1, \hat{\theta}_2) = c \neq 0$, how should constant a be chosen in order to minimize the variance of $\hat{\theta}_3$?
- **4.** Consider the following joint density for random variables X and Y:

$$f(x,y) = \begin{cases} kxy, & \text{for } 0 < x < 1, x < y < 2 - x \\ 0 & \text{elsewhere} \end{cases}$$

- (a) Find k.
- (b) Find the marginal density of Y. Are these random variables independent?
- (c) Derive the conditional density f(x|Y=y), also find the conditional mean and conditional variance of X given Y=y.
- (d) Find Cov(X, Y).

5. A single observation X is taken from a population with density function

$$f(x,\theta) = \theta e^{-\theta x}$$
, for $x > 0$ and $\theta > 0$.

- (a) For c > 0 consider the test that rejects $H_0: \theta = \theta_0$ in favor of $H_1: \theta = \theta_0$ when X > c. Determine c so that this is a size α test where $0 < \alpha < 1$.
- (b) Invert the test in (a) to obtain a 1α size confidence set for θ .
- **6.** For a Markov Chain representing a random walk on the non-negative integers,

$$\begin{cases} X_{n+1} = X_n + 1, & \text{with probability } p \\ X_{n+1} = X_n - 1, & \text{with probability } q = 1 - p \end{cases}$$

unless $X_n = 0$, in which case

$$\begin{cases} X_{n+1} = 1, & \text{with probability } p \\ X_{n+1} = 0, & \text{with probability } q = 1 - p \end{cases}$$

- (a) Give the conditions (with proof) under which the stationary distribution exists, then calculate the stationary distribution.
- (b) Calculate the expected time, starting from 0, to reach the state 3.
- **7.** For the Poisson process with the rate λ . Let W_k be the time when kth event occurs.
 - (a) Find the correlation coefficient between W_3 and W_4 .
 - (b) Find the correlation coefficient between W_3 and W_4 , under the condition that $W_5 = 10$
- 8. The customers are coming to the system according to the Poisson process with the rate λ . Each customer is immediately being served, with the service time being Exponential with the rate parameter μ . Let X(t) be the total number of customers in the system at the tie t (currently being served).
 - (a) Model X(t) as a birth-and-death process (specify the birth and death rates).
 - (b) Find the stationary distribution for X(t), specify the conditions under which it exists.