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Problem 1.

a) Develop the Taylor’s method of order 3 for the following initial value problem:

x′ = x2 + t, x(t0) = x0.

b) Given Xi, the numerical solution at t = ti, show how to compute the solution
Xi+1 at ti+1 = ti + h.

Problem 2.

Suppose that f is a smooth function of a single variable. Using values f(x), f(x+ h),
and f(x+ 3h) and the Taylor series formula, derive the best finite difference approxi-
mation for f ′′(x), and determine the order of accuracy of the approximation.

Problem 3.

Determine the degree of exactness of the following quadrature formula:∫ 1

−1

f(x)dx ≈ Q(f) ≡ 7

15
f(−1) +

16

15
f(0) +

7

15
f(1) +

1

15
f ′(−1)− 1

15
f ′(1).

In fact, the quadrature formula can be obtained by integrating the Hermite interpolant
H(x) of function f(x) at points x0 = −1, x1 = 0, and x2 = 1; that is,

Q(f) =

∫ 1

−1

H(x) dx.

Using the following error formula of the corresponding Hermite interpolant

f(x) = H(x) +
ω(x)

6!
f (6)(ξ(x)),

where
ω(x) = x2(x2 − 1)2,

and the weighted mean value theorem for integrals:∫ b

a

f(x)g(x)dx = f(ξ)

∫ b

a

g(x)dx, ξ ∈ (a, b), sign(g) = const.,

obtain the error formula of the quadrature∫ 1

−1

f(x)df =

∫ 1

−1

H(x)dx+
f (6)(ξ̄)

4725
, ξ̄ ∈ (0, 1).

Problem 4. Describe the Newton method and the Secant method for solving the scalar
equation f(x) = 0 for x ∈ [a, b]. Discuss advantages and disadvantages of the methods.
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Problem 5. Consider an m by n real matrix A, and let B be the matrix of the same size
with entries bi,j = |ai,j|. Let ∥ · ∥2 be the matrix 2-norm. Show that

∥A∥2 ≤ ∥B∥2. (1)

Hint: prove the bound ∥Ax∥2 ≤ ∥Bx∥2.

Problem 6. Let

M =

(
A B
Bt C

)
be a positive definite matrix with square diagonal blocks. The matrix

N = C −BtA−1B

is known as the Schur complement of block A in M . Prove that the Schur complement
N is positive definite.

Hint: Consider xtMx, and let vector

x =

(
x1

x2

)
be partitioned in accordance with the partitioning of matrix M . For any vector x2, let

x1 = Dx2

for some matrix D. Find a scalar c such that, for D = cA−1B, it follows that

xtMx = xt
2Nx2.


